45 research outputs found

    Interband electron Raman scattering in a quantum wire in a transverse magnetic field

    Full text link
    Electron Raman scattering (ERS) is investigated in a parabolic semiconductor quantum wire in a transverse magnetic field neglecting by phonon-assisted transitions. The ERS cross-section is calculated as a function of a frequency shift and magnetic field. The process involves an interband electronic transition and an intraband transition between quantized subbands. We analyze the differential cross-section for different scattering configurations. We study selection rules for the processes. Some singularities in the Raman spectra are found and interpreted. The scattering spectrum shows density-of-states peaks and interband matrix elements maximums and a strong resonance when scattered frequency equals to the "hybrid" frequency or confinement frequency depending on the light polarization. Numerical results are presented for a GaAs/AlGaAs quantum wire.Comment: 8 pages, 5 figure

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-Îł ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-Îł ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-Îł is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials

    Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods

    Get PDF
    Motivated by petro-chemical geological systems, we consider the natural convection boundary layer flow from a vertical isothermal wavy surface adjacent to a saturated non-Darcian high permeability porous medium. High permeability is considered to represent geologically sparsely packed porous media. Both Darcian drag and Forchheimer inertial drag terms are included in the velocity boundary layer equation. A high permeability medium is considered. We employ a sinusoidal relation for the wavy surface. Using a set of transformations, the momentum and heat conservation equations are converted from an (x, y) coordinate system to an (x,η) dimensionless system. The two-point boundary value problem is then solved numerically with a pseudo-spectral method based on combining the Bellman–Kalaba quasi linearization method with the Chebyschev spectral collocation technique (SQLM). The SQLM computations are demonstrated to achieve excellent correlation with smoothed particle hydrodynamic (SPH) Lagrangian solutions. We study the effect of Darcy number (Da), Forchheimer number (Fs), amplitude wavelength (A) and Prandtl number (Pr) on the velocity and temperature distributions in the regime. Local Nusselt number is also computed for selected cases. The study finds important applications in petroleum engineering and also energy systems exploiting porous media and undulating (wavy) surface geometry. The SQLM algorithm is shown to be exceptionally robust and achieves fast convergence and excellent accuracy in nonlinear heat transfer simulations

    Novel Biomarkers Distinguishing Active Tuberculosis from Latent Infection Identified by Gene Expression Profile of Peripheral Blood Mononuclear Cells

    Get PDF
    BACKGROUND: Humans infected with Mycobacterium tuberculosis (MTB) can delete the pathogen or otherwise become latent infection or active disease. However, the factors influencing the pathogen clearance and disease progression from latent infection are poorly understood. This study attempted to use a genome-wide transcriptome approach to identify immune factors associated with MTB infection and novel biomarkers that can distinguish active disease from latent infection. METHODOLOGY/PRINCIPAL FINDINGS: Using microarray analysis, we comprehensively determined the transcriptional difference in purified protein derivative (PPD) stimulated peripheral blood mononuclear cells (PBMCs) in 12 individuals divided into three groups: TB patients (TB), latent TB infection individuals (LTBI) and healthy controls (HC) (n = 4 per group). A transcriptional profiling of 506 differentially expressed genes could correctly group study individuals into three clusters. Moreover, 55- and 229-transcript signatures for tuberculosis infection (TB&LTBI) and active disease (TB) were identified, respectively. The validation study by quantitative real-time PCR (qPCR) performed in 83 individuals confirmed the expression patterns of 81% of the microarray identified genes. Decision tree analysis indicated that three genes of CXCL10, ATP10A and TLR6 could differentiate TB from LTBI subjects. Additional validation was performed to assess the diagnostic ability of the three biomarkers within 36 subjects, which yielded a sensitivity of 71% and specificity of 89%. CONCLUSIONS/SIGNIFICANCE: The transcription profiles of PBMCs induced by PPD identified distinctive gene expression patterns associated with different infectious status and provided new insights into human immune responses to MTB. Furthermore, this study indicated that a combination of CXCL10, ATP10A and TLR6 could be used as novel biomarkers for the discrimination of TB from LTBI

    Experimental characterisation of textile compaction response: A benchmark exercise

    Get PDF
    This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure for fibre bed compaction measurements. A glass fibre 2/2 twill weave and a biaxial (±45°) glass fibre non-crimp fabric (NCF) were tested in dry and wet conditions. All participants used the same testing procedure but were allowed to use the testing frame, the fixture and sample geometry of their choice. The results showed a large scatter in the maximum compaction stress between participants at the given target thickness, with coefficients of variation ranging from 38% to 58%. Statistical analysis of data indicated that wetting of the specimen significantly affected the scatter in results for the woven fabric, but not for the NCF. This is related to the fibre mobility in the architectures in both fabrics. As isolating the effect of other test parameters on the results was not possible, no statistically significant effect of other test parameters could be proven. The high sensitivity of the recorded compaction pressure near the minimum specimen thickness to changes in specimen thickness suggests that small uncertainties in thickness can result in large variations in the maximum value of the compaction stress. Hence, it is suspected that the thickness measurement technique used may have an effect on the scatter

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Dementia in Latin America : paving the way towards a regional action plan

    Get PDF
    Regional challenges faced by Latin American and Caribbean countries (LACs) to fight dementia, such as heterogeneity, diversity, political instabilities, and socioeconomic disparities, can be addressed more effectively grounded in a collaborative setting based on the open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking and translational research) and align them to current global strategies to translate regional knowledge into actions with transformative power. Then, by characterizing genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions and mapping these to the above challenges, we provide the basic mosaics of knowledge that will pave the way towards a KtAF. We describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF
    corecore